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LINEAR SUFFICIENCY AND SOME APPLICATIONS
IN MULTILINEAR ESTIMATION

by

Hilmar Drygas

Summary

In thekinear model Y .X +u the question arises when a

linear transformation z =Ly contains all information of the linear

model. This problem was solved by Baksalary and Kala, (Annals

1981), Drygas (Sankhyi., forthcoming) and J. Muller, (Ph.D. thesis,

Kassel 1982).As an application we consider the estimation of the

variance of the observations, its skewness and its kurtosis.

This is done by considering so-called derived models.., (Anscombe,

Pukelsheim, Kleffe). Linear sufficient statistics are derived

for these problems.

Key words and phrases: Linear models, tensor-products, symmetric
tensors, variance, skewness, kurtosis,
multilinear estimation, linearly sufficient
statistics.



LINEAR SUFFICIENCY AND SOME APPLICATIONS
IN MULTILINEAR ESTIMATION

Hilmar Drygas

1.. Linearly sufficient statistics in linear models

The concept of linear sufficiency goes back to work by Baksa-

lary and Kala (2), Drygas [6) and J. MUller [11). Since it is

needed in a coordinate- free form we will give it here in this

form. As usual a linear model is described by a statistical

field (0, F, P) and a random H-valued vector yH an inner-

product space, such that

(1.1) p y L Y Pe P

(1.2) Covy ye * PeP

This setup is also called the model M(L, 0). L will in general

be a linear manifold and * a cone of n.n.d. matrices (or oper-

ators). In this paper we will only be concerned with the case

MA- {o0 Q: a >0).

If the model M(L, O ) is given then a linear inhomogeneous

transformation d + Gy, 0 a linear mapping from H to H, Is called

BLUE (Beat linear unbiased estimator) of Ey if it is unbiased and

has smallest covartance-matrix (covariance-operator) in the class

of all linear unbiased estimator of By. d+ Gy is BLUE of By iff

(i) d - (I-G) V lcL, (ii) Gf-f V f4F - L-L and

(iii) GQx - 0 V x aFL A V Q c.

t . . .
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A BLUE must not exist, but it exists in the case H {a 2Q; a >0}

since F n QFp - (0). (See e.g., Drygas (5)).

1.1 Definition: Let A y - c + Ay. Then A y is called lihearly.
0 0

sufficient if there is a BLUE of Ey which is a linear function

of Aoy.

1.2 Theorem: A0 y is linearly sufficient if and only if F Sim(WA*),

where W.-Q + cPF is such that c>0 and Fc im (W). (PF is the ortho-

gonal projection onto F A is the adjoint mapping of A).

Proof: l.First assume that F c in (WA We consider the equation

BAPF - PF" We claim that this equation possesses a solution.

This euqation is equivalent to PF A *FB or Fc in (PFA*)

which again is equivalent to (APF) (0) S F". Therefore let* .
APFx - 0, then Pe - W A b for some b and A PFx- AWA b - 0,

implying WA b a Pig - 0.

'. Now let Hz be a BLUE of Ez in the model M(AF, A QA Then

for 1 e L

(1.3) (I-BRA) 1+BAy

- (I-BHA) I+BGHc + BHAe~y

is BLUE of By, if BAPF - Indeed, if lL and y-Qw,weF,

then AQw- AWw - AlA v for some v. Since Fc in (WA ) is

equivalent to (AW)- (0) s FL, AW(w-A v) - 0 implies w-A*v e F

i.e., A*v aF or v A*-I(F') - (AF)'. Thus HAW' A*v-O. Thus

(1.4) (1-BHA)l-Ghc + GHAo l + Qw)

-1,

. proving the BLUE-property.

S ;- - . - ' .:- . , .. . . . - , . - , . - .• . °. :. . . . , , , . . , . . . . , : . . . . . ... .
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2. Let G A y+d be BLUE of Ey in M(L,{Q}). Then

(1.5) GOA f 1 l I eF - L-L, GoAQF = 0.

We show (AW) 1 (0) c F1 which is equivalent to F cin (WA*). Let

AWt - 0, where Wt = Qa+f, a e F', f eF. Then G0AWt= 0 = f im-

plying Wt = Qa = Wa,(t-a) e wl (0) c F (since F c im W). Thus

* t - a + (t-a)e F

Q.E.D.

1.3 Definition: Let z = Aoy be linearly sufficient. Then z is

called linearly minimal sufficient if for any z1 M Aly which is

linearly sufficient, there exists a B1 such that z B1zI al-

most surely mod P.

1.4 Theorem: z - A 0 yc +Ay is linearly minimal sufficient if

and only if

(1.5) F.- im(WA*)

The proof goes along the lines of a similar proof in Drygas

[6].

2. Computation of expectation and covariance for multilinear
expressions

In this paragraph we are assuming that 1 c,2 ,...,c n are

independent (at least up to a required order concerning the com-

putation of moments) random variables with expectation zero and

existing moments up to some required order. The moments E(ci) are

J4
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assumed to be equal for all i. Thus cl,...,cn behave - at least

what the moments up to a certain order is concerned - as inde-

pendently identically distributed random variables.

Let c - (cCnd and A be a symmetric nxn-matrix. Then

(2.1) E(c AF)= E(tr (A cc)) - E(tr (A a2 in))

= a2 tr A.

The computation of E(c A 2 or Var(c' Ac) is tedious but it:is

usually considered as"elementary and straightforward". However,

in the last years attempts have been made to make such computa-

tions more efficient. We mention in this context mainly the paper

by J. Kleffe [10) who has elaborated an approach originally

adapted by Balestra [3) and Neudecker [12).

Let A= (aij, iji=l,2,...,n). Then for computing E(c'Ac)
2

evidently

(2.2) E(( : aijc i) aklckel)) -

i,j k,l

a aijakl '(Cicj'kcl )

is needed. Since (aijakl) - A N A, where 8 denotes the Kronecker-

product A A B - (aijB), evidently

(2.3) E(c'A) 2 . tr((A*A) E(ce' cE')).

This formula has been obtained by Baleqtra E33, Neudecker [12) and

Kleffe [10) via a different technique. However, the formula (.2.3)

does not yet help very much. Let us therefore rewrite (2.2), (2.3)

.4
. .. , ., -, . .. ;.-* - ,-.,- , . . ... , .- - . .. . . . . .. . ..
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in the form

(2.3a) E(c'Ac)2 a a E(ckc c)) "

If we denote the nxn -matrix E(ek cle') = E(ekc c i ) by *kl' then

evidently

(2.4) E(W'A )2 - tr(A • . akl *kl).
k,l

This is the formula obtained by Kleffe [10). If k =1, then by

independence *kl = *kk = E(ei)ekk + a4 1 e6 6 by if we denote the

matrix ei ej - ei the i-th unit-vector iRn by eij. Let

E(c) Ba 4 . Then

(2.5) *kk = a 4(0-1) ekk + j e6 6 ) =4{(0-l)ekk + In}

is obtained. Similarly we get for k f 1, that by independence

(2.6) kl 4 4(kl + e lk)

". Finally by symmetry of A

(2.7) [ akl*kl -a 4{( n akk)(In) +I (0-l)akkekk+2E aklekl}
k,l k-i k kol

W (,4tr A) In + (-3) diag A + 2 Al

n
where tr A- I akk and diag A is the diagonal matrix with the

k-i 2
same diagonal-matrix as A. Since (trA) - tr((tr A)In .A),)n

evidently

(2.8) (Cov cc') A-2A + (0-3) diag A,

as is well-known (Hsu [83, Drygas (4)).

q
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-4 The method developed by Kleffe can readily be extended to

the computation of variances for p-fold Kronecker-products. We

consider the lB as the set of collection of real numbers

(ai . .  ii''p =i,...,n) which are lexikographically

ordered. An element a - (a, ip) will also be called a p-fold

tensor. If b .n , then b 8 P - (b -1 ) 9 b is evidently a
p

p-fold tensor with elements ,. = b.b In k

we introduce the usual inner product

n
(2.9) <a,b> =a i bl .

... ipl ai" 'p 1... p

A tensor a - (ail p) is called symmetric, if
pm p

(2.10) arr( i)...W(ip) M ail...1 p

for any permutation w eS p. Evidently bMp is a symmetric tensor.

The projection on the set of symmetric matrices is given by the

symmetrizer wSr:

(2.11) (wS a) i.i WiS

We consider C3 and e 4 . Evidently

93 n 3
(2.12) E <a, - ( a a1 i) E(C1 )i-l

Similarly, if a is symmetric

(2.13) E(<ac84 >)=I a i jk l E(ei ekCl) 
ilj , k,l

4- aiii+ 3a 4  ajij
ii ij

where again E( 4) 4. Since <a,c 4> a <a,nS  &4> =<c84,7ta >

the restriction to symmetric a is not essential. We will come

back to this at the end of the paragraph.

What the computation of the covariance-operator of CB3 and

b7
,, • , . ,' , , ," • . • : ; ' - - ,,. :.,... . .. . -. -. . ... ,.-.*- . . , . .. . . , .*• . -
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C4 is concerned it is hardly possible to get simple expressions

without additional assumptions. Therefore we will assume in the

sequel that e is quasi-normally distributed, i.e., that the mo-

ments up to order 6 and 8, respectively, coincide with the normal
4 4

moments. This means that for p -3 we assume that E(Ci - E(C1

4  E(i )= E(e1 )= 15 a6 and for p=4 additionally E( 8i

105 a8 is assumed to hold. To compute E(<a,E P>2 )evidently
i n

(2.14) a .il. .i a J iC . ip Jl . ...C.
il,...,ip,jl,..., p " 1.. 2 2  Jp

has to be computed. This may also be written as <a,Va>, where

V is some operator. Evidently (2.14) is equal to

n
(2.15) a .. ai( a E( C pC

p.. **i l..

implying that

(2.16) VaI ala  j ' ' p

apL
where j E(C Cil'" Jp il - ' Jp

We will compute Va for p =3 via formula (2.16) and for p =4

by just computing E(e l... jp il-..i . This will allow a com-

parison of the two methods.

To do the computations for p -3 evidently * , *ao and

S Y) have to be considered. We denote by e,,, the

tensor having a 1 at place (a,O,y) and zero elsewhere. Let,
n

*moreover, I aaao Tk~n we gp+ for symmetric a:
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(2.17) -as y %()(r(y) = 6 w Se By
r S3

(2.18) aaa = 3 06 + 06 (e 6 6
1 +e 86 6

+ e6
B

6 )

6 6

(2. ) 1 (e a +e +e3 a)= a +  es ,s aB

: (2.19) i = l5o6 e + 306 X (e 8 . 0 0 +e8 ,)

"," 06 06 SI
-6 ae +9 I

Finally

(2.20) Va =,aBa 6  a e

+ 9 ( a B  I+ 6 a a (e +e +e,,, )

B S a O

+6 Ia aaaea + 9 (I )a I
aaaaa Sa a a

a 6 a,,,+ 9 ~a 7r I0(6 aaB~aBYaaO SB
a,B, sty• ,. = 0 6 6 [a Be + 9 [(r aa slB }

na6t6a + 9 (tr B a)lrsI } ,

nwhere tr8 a= = a Evidently also

(2.21) Va = {6(6a+ 9 (SI 0 TSI 8 )J0"=B1 S S

where a ob denotes the outer product defined by (a ob)c-<b,c>a.
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This follows from <a,rsI> = tr a, if a is symmetric. It is also

true, that

n
- (2.22) (nSI oI B0I ) S (In 0 vec(In)(vec In)) )WS

the representation found by Pukelsheim in [141. This representa-

tion will not be used in this paper.

We now assert, that for symmetric a = (aijkl)

(2.23) E(<a,c > )= I a a E(C i E kC
i,j,k,l,r,s,t,u=l ijkl rstu 1 j l1r s t u

8 n n
a8{24 1 aijkl +72 l aiijkajkll

i,j ,k,l=l i,j ,k,l=l

n

+ 9 1 a..ja kkall}
i,j,k,l=l 11

Indeed, under quasi-normality, E(c ijklr s Ct u ) vanishes if

some e appears an uneven number of times. Therefore only the

8 6 2 4 4 4 22 2222cases ei, e C , C C C k and eiCjCkC are to be
ce i' i i J'k ij k 1

considered. If all indices i,j,k,l are different from each other

then surely the sums reported in (2.23) will appear. The factor

24, 72 and 9 arise from careful combinatorial considerations and

the fact that a is symmetric. Note that some combinations are

covered by the summation. If i =j =k =1, then the subsum in

(2.22) is equal to

n2 8
(2.24) 1058 iii a= 8 aa E( C)

i=

Now consider the 6 cases i=J, i=k, i=1, j -k, j =1 and k=1.

Then by symmetry the corresponding subsum in (2.23) is equal to

.5 " ,-. _ : ° : ;i > . . - . / :i;.> . .. .. . .
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(2.25) 'a 8{18 Eaiiiia jjkk+288 a iiijaijkk
+ 16E 2

26aiijk +108 Z a iijj aiikk}

3 8{6 aiiiiajjkk+96 Eai iijaijkk

+372 Ea.a + 6 a. a .

iijk iijk + 36 iijj iikk
S4 04

In view of E(e i) 4 3 a and symmetry this is just the set of all.
1

possible summands occurring with factor E(eccj). Again care-

ful considerations are necessary to establish the combinatorial

numbers6,96,72 and 36. Finally we get for the seven cases

.i=j=k; i=j=1; i=k=l; j=k=l;.i=j, k=l; i=k, j =1 and

i =j, k=l as subsum of (2.23)

(2.26) 68O180 Za iiiiaiijj + 240 a2

iii+ 9 Ea a + 144 Za a +162 Ea2

8 215a8 U12 Zai 1ia i1jj + 16 Za i1.ji

+ 9a8 {Zaiiiiajjjj + 16 Za iiijaijjj + 18 Zaiijj}.

6 6 4 .4In view of E(ei) = 15a , E(ci)= 3a the first sum belongs due

6 2to symmetry of a to all terms where E(ECie) appear. The second

44sum belongs to all terms where E(ciE 3 ) occurs. Again, careful

reasoning is necessary to determine the combinatorial factor 12,

16, 1, 16 and 18.

Since the last term in (2.22) is evidently equal to

9a 8(Eaiijj) [E(<a, 4>)] 2 it follows that for symmetric a:

. . . . . . . . .. .. .. .. . . .



04 8 2(2.27) Var(<a,e >) a {24 ai.k+ 72 Ea a I. rij3 72 iijkajkll}

Define the tensor e which has unity at place (c,8,,6) and".-

fl n
,- zero elsewhere. Let Ijk= e jka and tr j,ka = ajka Then

evidently

(2,28) Var(<a,e4>) =a8 <a,24a + 72 (trka)Sjk
. jk=1

This shows that for symmetric a evidently

4 a8  n + 7
(2.29) Cov(e = 824 1 + 72 SjkOsIjk

I: J ,k=l

where (aob) again denotes the outer product: (aob)cf<b,c>a.

(2.28) can also be written as

(2.30) a8 {24I+72{7r(i a 9 (vec In (vec In) (vec In) (vec In) r

the representation given in Pukelsheim [14]. This representation

will not be used here.

A final remark of this paragraph concerns the covariance-

opeartor (2.28). This formula is only correct if it is really

considered as a covariance-operator, restricted to the symmetric

tensors. It is not identical with the covariance-matrix. Let

02 02us assume we have computed the covariance-matrix E(e2(c ) ) - C.

From (2.4)-(2.6) we get in the quasi-normal case Ca - a4{(aij) +

(aji) + (tr a)In}. Since in general vec(bb') - b B b it follows

that E(e 4  - vec(E(c 2 )2' - vec(C). Denote by eii the2

vector in 3,n having 1 at place i n + j and zero elsewhere, then

it is easily checked that vec(C) is different from 3a

(ell... eln.., enl, enn, but equality is obtained when the two

* 4~4 - . 4- ., ,..... Z L.,,."..,,..... - , 9 :," ' ' . • _ _ .. ._ -
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matrices are applied to symmetric tensors. In so far the assertion

in Pukelsheim [14) claiming that (2.29) is the covariance-matrix

is wrong.

3. Linear sufficient statistics in multilinear estimation

n 2
We consider the linear model EycLs E , Covy - a In as

described in section 1 of this paper. Let F - L-L and PFy de-

note the orthogonal projection of y onto F. Then Goy 1 +PF(Y-1),

1 c L is the unique BLUE of Ey. We consider

(3.1) u.- 0-1(y-Ey), z - (IPF)(Y.l) = a(I-PF)u.

The quantity

(3.2) V - zz' - (l-P )(Y-l)(y-I)(l-PF) "2 (I-PF)uu'(l-PF )

is a random element with values in the set H of all symmetric

nxn-matrices A satisfying Af -0 V f eF. Let M - ( F) , then

AcH iff MAM - A (Drygas [4)). In H the inner product

.4 <AB>z A tr(AB) is used. Since <zz',A> - (u' Au) and by (2.1),

(2.8)

(3.3) E(u'Au) - tr(A) - tr(MA)

(3.4) Var(u'Au) - tr([2A+(0-3) diag A].A)

- tr([2A + (0-3) Mo diag A-MIA),

4 ° I q " - ° i " . " . • , - • * • • • 
°
• 
o
• - , o . • . . * -
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we get tha V- zz' follows the linear model

(3.5 EV-cr2U, { 2A +(0-3)M diag A MI,

if considered as H-valued random element.

Besides the mapping Dlig A - (a j 6jj1) which is evidently

self-adjoint we consider the linear mapping diag: , ,n

defined by diag (xi, ... ox )' - (6 ij x i). Evidently the adjoint is

da*( ii (all,...,#a n)'. If A and B are two nxn-matrices

then the Hadamard-product A *B is defined by (A *B) - (a ijb).j

3.1 Theorem: Let M 00. Then tr(MV) - tr(V) is a linearly suf-

ficient statistic in the model (3.5) if f the Hsu-condition

a 4(0-3)(M *M) in-p m, where p - (0-3)a 4tr(M *M)/(tr M) is met.

In this case tr(MV) - tr V is also linearly minimal sufficient.

Proof: Consider the linear mapping AV - tr(MV). This is a map-

ping from H to JR. The adjoint mapping of this mapping is

A * x - U xM, x eJR. A is linearly sufficient if f

(3.6) {XMI S {X WM} - im(WA*),

where

(3.7) W - Coy V + (tr M)_ (Mo0M),

since (tr M)-1 M oM is the orthogonal projection onto 0,M}. This

is the case if f

(3.8) WM 2 U + a 4(0-3) U(Diag M) M+ M -p M

4for some p 0. This means that a (0-3) M(Diag U) M -c M for

some a e J. By taking traces on both sides of the last equation
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a- (tr M) -1 a4 (0-3) tr(U diag M) - (tr M) 1 a 4(B-3) tr(M* M).

Since tr(M *M) < tr(M) and 8 > 1 it follows that p -2a4 +a4 +

1 > 1 > 0. But by Hsu's theorem (Drygas-Hupet [7), Pukelsheim

[13), Khatri [9)), M diag x M -0 is equivalent to (M* M)x-0.

This finishes the proof of the theorem since the assertion con-

cerning linear minimal sufficiency is now obvious.

3.2 Theorem. Let M f 0. Then diag V - (v1 1 ,...,vnn) is a

linearly sufficient statistic.

Proof: 1) Since we consider V as an element of H, diag is to

be considered as mapping from H to ]Rn . The adJoint ((diag)*)*

of this mapping is not diag -but M diag M, since for A c H

(3.9) tr (M diagxM. A) - tr(diagx. A)- x' (diag)* A.

and M diagx MclH.

2) Two cases have to be distinguished. Either there is an

element A H such that (Coy V)A-M or there is an element A cl

such that tr(AM) f 0 and (Cov V)A-0. (The latter case can only

occur if 8-1.) This follows from im(Q) -(Q (0)), if Q is

self-adjoint.

In the first case theorem 1.2 tells us that we can choose

W - Cov V, while in the second case W will be chosen equal to

Coy V + (tr M)-(MoM). In both cases, however, M im(W(diag ))*)

has to be proved. Let M - (Cov V)A-a 4 (2A + (0-3) M Diag AM),
* 4

At H. This implies at first that y can't vanish. Therefore

0O

', ,9 .'o . . . ' . '. ,.,'./. .' .-... . .. , -.-. .. , .. , . ,- * ..-.... . i ..
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(3.10) A -(2a 4 f- M(diag I- 4 (8-3)diag Diag*A) M = Mdiagx M

4 4 4with x - (2a4) 1 (l - 4 (0-3) Diag A), ln =( 1 1,..,1)'. Thus
n

M - (Cov V) (diag") x and diag is linearly sufficient.

-1
In the second case (Cov V) A -0, WA - (tr M) tr(MA)M 0,

- implying WB - M, B - (tr(MA))-(tr I.M and

(3.11) (Cov V)B -2 a B+ca4 (B-3) Mdiag Diag BM=0.

Thus if a 0, B - -2-(0-3) M diag Diag BMU-UM diagxM, x -
:"--1( Da* * *

-2 (0-3) Diag B. If a -0, then evidently W(diag ) ln -

WM diag In M-M. Therefore linear sufficiency is proved in all

possible cases, Q.E.D.

We will now consider

(3.11) Viii 'mz 91 MM a i -3,4.

Since M Gi z t = (Mz) - a' 0P' uli we can apply the results

of paragraph 2 for obtaining expectation and covariance-operator

of V First of all, note that Vt is a symetric tensor obeying

the equation MaiV = Vt. Therefore our reference vector-space

* H will be the set of all symmetric tensors a meeting the equation

asia - a.

We introduce the following notation: Let ae n am (al. ,an)

.Then we define diag1 a - (a, 6 6 1 1...ip, 1,...,n)

Win. In general if a-(ai .ik ) a N n and p>k we define

- (3.12) diag (a) m (ai k 6 k+1 ' 6 )kip )

With these definitions we evidently get from (2.11) and (2.12):

'1,

9 ' : - ''" ' " '''. ""' ".- ' . " . " "' ."*,. -" ' -" . ''''. "" .2 .,- ".""'9 ., ".. . . . .., ' " " " "
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(3.13) E(z 3 ) - a3E(u3)0 3 diag In , 1n= (

04 4 n
(3.14) E(z =a4M0 4 {(-3) diagI ln +3 1 WS II }

=l

* The covariance-operator, defined as mappings from H to H, are

found in the quasi-normal case (.use 0ia -a!) to be equal to

03 6 03 (wIn(3.15) Cov(z ) - a 661 + 9 U03  (iSIB S)

(3.16) Cov(z 04 ) wa 8 {241+72 koWSIjk} .

J ,k=l Sj

This model has intensively been studied in Pukelsheim [14).

Since the covariance-operator is only computed under quasi-

normality the estimators derived from linear model theory are only

locally best (linear) unbiased estimators. Pukelsheim's inves-

tigation was suggested by a paper by Anscombe E1, who used

diag* z 3=Z* 3 and diag* z 4 . z*4  to obtain estimators of

E(u 3 ) and E(u4), respectively. Pukelsheim showed that these es-
1

timators are not even locally best. Using z and z respect-

ively, means the consideration of linear combinations of zizjzk

(i,j,k - 1,...,n) and of ziZJZkZ1 (i,j,k,l ,...,n), respectively.

But we will show now that it is enough to consider only ziz

(ij -l,...,n) and zzz k (i,j,kl;...,n), respectively. Evi-

dently (zizi) 2 diag2 (z z zk) *2 1 z. Similarly, (z2zjzk) =

*2 02 04
z a z - diag3 z . e will prove that these statistics are

linearly sufficient.

3.3 Theorem. a) z 8 - diag* is linearly sufficient in

the model described by (3.13), (3.15).

* @-::2;~ .4- **. . . .o . . . . .
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b) -
. diag z is linearly sufficient in the model des-

cribed by (3.14), (3.16).

proof: a) Since our reference vector-space H is the set of all

symnetric tensor a from Rn3 meeting 03 a-a, (diag*)* has to2

2

be mapping from n to H. This mapping is

(3.17) (diag*)* - K 3 vdiag2

This follows since 03vs diag2 b cl and <M*3wS dta92 b,c>

<dag b,c> - <b, dia c> for all b c Z , c EH.92 bdg c

* We firstly deal with the case 06 - O. Let M 0 0, otherwise

there is no assertion. Let W - (IP3 diagl 1n o 3 diag1 In)

3 ( - 1 . W is the orthogonal projection onto F -3y M9

f diag1 1 n. Since Cov V3 =O and W a3 diag1 in 03 diag1 in

N 3 diag2 vec(In) 
= (diag* )* vec(In), (diag2 ) is clearly

linearly sufficient.

Now let a6  0 0, then Cov V3 =Ma
6{61 + EM03E ...J Is regular

or H, since <(Coy V3 )a,a> - 6 06 <a,a> + 9 a6 1 (laiii) 2 vanishes
-. J i

iff a =O. For this reason there is a tensor a aH such that

(3.18) M8 3 diagl l. -6 a6+9 06 03 W (SI owsIij)a

Since W can be chosen equal to Cov V3 our assertion would be

proved if we could show that a has the form T3sdiag2b for some

b e Mn But (3.18) implies that

(3.19) a - (606)-i M 3 (diag1 in - 9 0I ,

a M23wsdiag 2 b;

". .'", . '.,.. ..-.- .... ' ,, . _,. Z. , . ... .. . -. . - ." "- ."-'-
.A : ,.. . . . . . . . - ., .", -• 4 •
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where b - (b)ij and

(3.20) b i = (6a 1(6 j - 9 a6 I 1. a ij)"

b) Again, (d * M 4  dg3 can easily be established. Sinceb) gan,(d 3 )  = 93

-8 <(Cov V4 )a,a> - 24<a,a> + 72 1 (laikl1 , aeH is positive
lj,k,1 1

whenever a 0, Cov V4 is regular and W-Cov V4 is a possible choice,

if a78 0 0 (aS 0 can analogously be dealt with as above). There-

fore there is an element a H such that

(3.21) Wa - M 4diagl In = as{24a+72 M " E < I a>frS I k
i~ lk '

and an element b eH such that

(3.22) Wb-U 4  wSIiimca8 {24b+72 M04 E <jkb>SIjkI

These two equations can be rewritten as

(3.23) a -(24a 8 )- M 64(diag1 in-7 2 a8 < IJkl &>WrS jk I

M (n S diag3 c1
),

(3.24) b-(24 8 )"1 M'0 4 (y wSI - 7 2 c 8  b>wI

-P 4  S diag3 c2,

where

(3.25) c1 
= (6 16 ik - 72a 8  ( G yy))/(24as)

(3.26) c2" (6 -" 72a $  ' yaaOYY)/(24
a8 )

This shows that im(W(diag*)*) contains the set of possible expec-

*. tation-values, Q.Z.D.

** '' *. o.
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